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Abstract 

The formulae for triangular number as an alternative for the sum of arithmetic progression was further demonstrated 

through routine algebraic procedures which resulted in the same formulae with mathematical reasonings and 

inductions for its nth term that was later validated using the R version 3.6.1 
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1. INTRODUCTION 

Recent contemporary studies on the theories of numbers might have paved the way for mathematical discoveries and 

fascinating properties of triangular numbers for more detailed explorations in science, engineering and technology. 

Number theory as an integral part of mathematics with a contesting problem in series and sequences which serve as a 

source of attraction to many mathematicians paving ways for the study of number sequence, for example, cardinal 

numbers as part of figurative numbers in theories of number can, of course, be studied as a mathematical topic (Panda 

& Ray, 2011; Kleiner, 2012). 

Arithmetic and geometry seem to be antithetical at first sight, one dealing with the discrete and the other 

with the continuous. The relations between the two are, however deep, though often hidden. The tensions 

between number and geometry and between the related analytic and synthetic approaches to mathematics 

have been very beneficial for the development of the subject (Olds, et al., 2000, Stillwell, 2002 and 

Mazur, 2003). 

Although the connection between arithmetic and geometry is fundamental, it has not always been amicable. 

The early Greek harmony between number and shape, given expression in, among other things, the 

arithmetic development of the Pythagorean theory of similarity, was shattered by the Greek crisis of 

incommensurability, that is, by the proof of the existence of incommensurable magnitudes (Kline, 1972). 

However, an example of this cooperative relationship was the introduction by the Pythagoreans of the 

polygonal numbers which gave birth to triangular numbers as our focusing point in this study. 

Beldon and Gardiner (2002) compared triangular numbers with perfect squares and established that the sum 

of any two consecutive triangular numbers is always a perfect square. This fact was known to the ancient 

Greeks and attributed the result to Theon of Smyrna (Heath, 1981) with the name triangular numbers 

stemming from the Greek interest in figurative numbers whereas interest in square triangular numbers by 

Burn (1991) metamorphosed into continued fractions. 

Pythagoreans study on polygonal numbers depicted triangular numbers as being represented by a triangular 

array of dots and sum of positive integers (Tattersall, 1999) but each primitive Pythagorean triple of positive 
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integers leads with the aid of an algebraic identity to a family of triples of integers. However, each triple in 

this family provides three triangular numbers, one for each component, such that the sum of two of them is 

equal to the third one (Haggard, 1997). This study tends to use the dynamism and flexibility nature of 

triangular numbers to investigate its link with the sum of arithmetic progression inasmuch triangular 

numbers are sequent partial sums of positive integers ℤ+. 

2. TRIANGULAR NUMBERS TO SUM OF ARITHMETIC PROGRESSION 

Let the partial sums of positive integers be equivalent to the triangular numbers proposed in Afolabi and Oluwagunwa 

(2021) & Oluwagunwa and Afolabi (2018) that the partial sum represented by (𝑆𝑛
∗) for the sequence of positive integers 

(ℤ+) is both equal and the same in algebraic formulae and numerical values for triangular numbers (𝑡𝑛). 

𝑆𝑛
∗ = 𝑡𝑛 = ∑ 𝑘

𝑛

𝑘=1

 

𝑆1
∗ = 𝑡1 = ∑ 𝑘

1

𝑘=1

= 1 

𝑆2
∗ = 𝑡2 = ∑ 𝑘

2

𝑘=1

= 1 + 2 = 3 

𝑆3
∗ = 𝑡3 = ∑ 𝑘

3

𝑘=1

= 1 + 2 + 3 = 6 

⋮ 

𝑆𝑛
∗ = 𝑡𝑛 = ∑ 𝑘

𝑛

𝑘=1

= 1 + 2 + 3 + ⋯ + 𝑛 

Suppose an arithmetic progression is strictly an increasing sequence of the form 𝑎1, 𝑎2, 𝑎3, ⋯ , 𝑎𝑛, 𝑎𝑛+1, ⋯ with the 

difference of any two successive members being a constant (𝑑), then 

𝑎2 − 𝑎1 = 𝑎3 − 𝑎2 = ⋯ = 𝑎𝑛 − 𝑎𝑛−1 = 𝑎𝑛+1 − 𝑎𝑛 = ⋯ = 𝑑 

It, therefore, implies that the common difference (𝑑) between any successive terms of the arithmetic progression can 

be written in general form or term (𝑇𝑛) as  

𝑇𝑛 = 𝑎1 + (𝑛 − 1)𝑑 

with the sum (𝑆𝑛) of the first 𝑛 terms of this sequence 

 

𝑆𝑛 = 𝑎1 + 𝑎2 + ⋯ + 𝑎𝑛 =
𝑛(𝑎1 + 𝑎𝑛)

2
 

amounting to the submission of Oluwagunwa and Afolabi (2018) on mathematical discoveries and fascinating 

properties of triangular numbers in partial sums of positive integers and sum of arithmetic progression. 

Let 

𝑆𝑛 = 𝑎1 + 𝑎2 + ⋯ + 𝑎𝑛 

or 

𝑆𝑛 = 𝑎𝑛 + 𝑎𝑛−1 + ⋯ + 𝑎1 

here 

𝑎1 = 𝑎 

𝑎2 = 𝑎 + 𝑑 

𝑎3 = 𝑎 + 2𝑑 

𝑎4 = 𝑎 + 3𝑑 

𝑎5 = 𝑎 + 4𝑑 

⋮ 
𝑎𝑛 = 𝑎 + (𝑛 − 1)𝑑 

𝑆𝑛 = 𝑎 + (𝑎 + 𝑑) + (𝑎 + 2𝑑) + ⋯ + [𝑎 + (𝑛 − 1)𝑑] 
or 

𝑆𝑛 = [𝑎 + (𝑛 − 1)𝑑] + [𝑎 + (𝑛 − 2)𝑑] + [𝑎 + (𝑛 − 3)𝑑] + ⋯ + 𝑎 

The Sum of this arithmetic progression could either be ascending or descending order. Therefore, 
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𝑆𝑛 + 𝑆𝑛 = {𝑎 + [𝑎 + (𝑛 − 1)𝑑]} + {(𝑎 + 𝑑) + [𝑎 + (𝑛 − 2)𝑑]} + ⋯ + {[𝑎 + (𝑛 − 1)𝑑] + 𝑎} 

2𝑆𝑛 = [2𝑎 + (𝑛 − 1)𝑑] + [2𝑎 + (𝑛 − 1)𝑑] + ⋯ + [2𝑎 + (𝑛 − 1)𝑑]𝑛 𝑡𝑖𝑚𝑒𝑠 

2𝑆𝑛 = 𝑛[2𝑎 + (𝑛 − 1)𝑑] 

𝑆𝑛 =
𝑛

2
[2𝑎 + (𝑛 − 1)𝑑]      (1) 

Suppose the sequence 𝑎1, 𝑎2, 𝑎3, ⋯ , 𝑎𝑛 is a series of positive integers (ℤ+) 

1 + 2 + 3 + ⋯ + 𝑛 

then, 

𝑆1
∗ = 𝑎1 = 𝑎 = 1 = 𝑡1 

𝑆2
∗ = 𝑎1 + 𝑎2 = 𝑎 + (𝑎 + 𝑑) = 1 + 2 = 𝑡2  (𝑠𝑖𝑛𝑐𝑒 𝑎2 − 𝑎1 = 𝑑) 

𝑆3
∗ = 𝑎1 + 𝑎2 + 𝑎3 = 𝑎 + (𝑎 + 𝑑) + (𝑎 + 2𝑑) = 1 + 2 + 3 = 𝑡3 

⋮ 
𝑆𝑛

∗ = 𝑎1 + 𝑎2 + 𝑎3 + ⋯ + 𝑎𝑛 = 𝑎 + (𝑎 + 𝑑) + (𝑎 + 2𝑑) + ⋯ + [𝑎 + (𝑛 − 1)𝑑] = 1 + 2 + 3 + ⋯ + 𝑛 = 𝑡𝑛 

Comparing 𝑆𝑛
∗ to 𝑡𝑛, we have 

𝑆1
∗ = 𝑡1 = 𝑎1 = 1 = 𝑎 

𝑆2
∗ = 𝑡2 = 𝑎1 + 𝑎2 = 1 + 2 = 3 = 𝑎 + (𝑎 + 𝑑) = 2𝑎 + 𝑑 

𝑆3
∗ = 𝑡3 = 𝑎1 + 𝑎2 + 𝑎3 = 1 + 2 + 3 = 6 = 𝑎 + (𝑎 + 𝑑) + (𝑎 + 2𝑑) = 3𝑎 + 3𝑑 

𝑆4
∗ = 𝑡4 = 𝑎1 + 𝑎2 + 𝑎3 + 𝑎4 = 1 + 2 + 3 + 4 = 10 = 𝑎 + (𝑎 + 𝑑) + (𝑎 + 2𝑑) + (𝑎 + 3𝑑) = 4𝑎 + 6𝑑 

𝑆5
∗ = 𝑡5 = 𝑎1 + 𝑎2 + 𝑎3 + 𝑎4 + 𝑎5 = 1 + 2 + 3 + 4 + 5 = 15 = 𝑎 + (𝑎 + 𝑑) + (𝑎 + 2𝑑) + (𝑎 + 3𝑑) + (𝑎 + 4𝑑)

= 5𝑎 + 10𝑑 

by mathematical induction, we apply (
𝑛
1

) and (
𝑛
2

) for coefficients of 𝑎 and 𝑑 respectively, 

then 

𝑆1
∗ = 𝑡1 = (

1
1

) 𝑎 = 𝑎 

and coefficient of 𝑑 will not exist, since (
𝑛
𝑘

) is only for 𝑘 ≤ 𝑛 

𝑆2
∗ = 𝑡2 = (

2
1

) 𝑎 + (
2
2

) 𝑑 = 2𝑎 + 𝑑 

𝑆3
∗ = 𝑡3 = (

3
1

) 𝑎 + (
3
2

) 𝑑 = 3𝑎 + 3𝑑 

𝑆4
∗ = 𝑡4 = (

4
1

) 𝑎 + (
4
2

) 𝑑 = 4𝑎 + 6𝑑 

𝑆5
∗ = 𝑡5 = (

5
1

) 𝑎 + (
5
2

) 𝑑 = 5𝑎 + 10𝑑 

⋮ 

𝑆𝑛
∗ = 𝑡𝑛 = (

𝑛
1

) 𝑎 + (
𝑛
2

) 𝑑 =
𝑛!

(𝑛 − 1)! 1!
𝑎 +

𝑛!

(𝑛 − 2)! 2!
𝑑 = 𝑛𝑎 +

𝑛(𝑛 − 1)

2
𝑑 

Hence, the sum of this arithmetic progression (𝑆𝑛) is deduced from the algebraic formulae of a triangular number (𝑡𝑛) 

as 

𝑆𝑛 = 𝑡𝑛 = 𝑛𝑎 + 𝑛(𝑛 − 1)
𝑑

2
      (2) 

For 𝑎 = 𝑑 = 1 

𝑆1
∗ = 𝑡1 = 𝑎1 = 1 = 𝑎 (𝑎 ⇒ 𝑓𝑖𝑟𝑠𝑡 𝑡𝑒𝑟𝑚) 

𝑆2
∗ = 𝑡2 = 𝑎1 + 𝑎2 = 1 + 2 = 3 = 2 + 1 = 2𝑎 + 1 (𝑓𝑜𝑟 𝑑 = 1) 

𝑆3
∗ = 𝑡3 = 𝑎1 + 𝑎2 + 𝑎3 = 1 + 2 + 3 = 6 = 3 + 3 = 3𝑎 + 3(1) 

𝑆4
∗ = 𝑡4 = 𝑎1 + 𝑎2 + 𝑎3 + 𝑎4 = 1 + 2 + 3 + 4 = 10 = 4 + 6 = 4𝑎 + 6(1) 

𝑆5
∗ = 𝑡5 = 𝑎1 + 𝑎2 + 𝑎3 + 𝑎4 + 𝑎5 = 1 + 2 + 3 + 4 + 5 = 15 = 5 + 10 = 5𝑎 + 10(1) 

by mathematical reasoning, coefficients of 𝑎 follow natural numbers (𝑛) from 𝑆1
∗ to 𝑆5

∗ while coefficients of common 

difference (𝑑 = 1) follow triangular numbers in succession from 𝑆2
∗ to 𝑆5

∗ indicating a lagged by 1. 

Since 𝑡𝑛 =
𝑛(𝑛+1)

2
 then 𝑡𝑛−1 =

(𝑛−1)(𝑛+1−1)

2
=

𝑛(𝑛−1)

2
 

hence, 

𝑆𝑛
∗ = 𝑛𝑎 + 𝑡𝑛−1(1) = 𝑛𝑎 +

𝑛(𝑛 − 1)

2
(𝑑) 

𝑆𝑛
∗ = 𝑛𝑎 +

𝑛(𝑛−1)

2
(𝑑) = 𝑛𝑎 + 𝑛(𝑛 − 1)

𝑑

2
= 𝑆𝑛 = 𝑡𝑛     (3) 

Therefore, 
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𝑡𝑛 = 𝑎𝑛 +
𝑛(𝑛 − 1)𝑑

2
 

if 𝑎 = 𝑑 = 1, then 𝑡𝑛 = 𝑛 + 𝑡𝑛−1 

𝑡𝑛 = 𝑛 +
𝑛(𝑛 − 1)

2
=

2𝑛 + 𝑛2 − 𝑛

2
 

𝑡𝑛 =
𝑛(𝑛 + 1)

2
 

3. PROBLEM DEMONSTRATIONS 

Suppose 𝑎1, 𝑎2, 𝑎3, ⋯ , 𝑎𝑛 is an arithmetic progression with common difference 𝑑, we are expected to find in terms of 

𝑑 and 𝑎1 & 𝑎𝑛 the explicit value of the sum 

𝑆𝑛
∗ =

1

𝑎1𝑎2
+

1

𝑎2𝑎3
+ ⋯ +

1

𝑎𝑛−2𝑎𝑛−1
+

1

𝑎𝑛−1𝑎𝑛
 

Note that 
1

𝑎(𝑎 + 𝑑)
=

1

𝑑
(

1

𝑎
−

1

𝑎 + 𝑑
) 

then 𝑆𝑛
∗  can be written in a telescoping sum for which everything cancels except the first and the last terms 

𝑆𝑛
∗ =

1

𝑑
[(

1

𝑎1
−

1

𝑎2
) + (

1

𝑎2
−

1

𝑎3
) + ⋯ + (

1

𝑎𝑛−2
−

1

𝑎𝑛−1
) + (

1

𝑎𝑛−1
−

1

𝑎𝑛
)] =

1

𝑑
(

1

𝑎1
−

1

𝑎𝑛
) 

and in particular, if 𝑎𝑛 = 𝑛 then 

𝑆𝑛
∗ =

1

(1)(2)
+

1

(2)(3)
+ ⋯ +

1

(𝑛 − 2)(𝑛 − 1)
+

1

(𝑛 − 1)(𝑛)
=

𝑛 − 1

𝑛
 

 

Given that there are no arithmetic progressions of positive integers whose terms are all perfect squares. By contradiction, 

∃ positive integers 

𝑎1 < 𝑎2 < ⋯ < 𝑎𝑛−1 < 𝑎𝑛 < 𝑎𝑛+1 < ⋯ 

such that 

𝑎1
2 < 𝑎2

2 < ⋯ < 𝑎𝑛−1
2 < 𝑎𝑛

2 < 𝑎𝑛+1
2 < ⋯ 

is said to be an arithmetic progression with common difference 𝑑 

𝑑 = 𝑎2
2 − 𝑎1

2 = 𝑎3
2 − 𝑎2

2 = ⋯ = 𝑎𝑛
2 − 𝑎𝑛−1

2 = 𝑎𝑛+1
2 − 𝑎𝑛

2 = ⋯ 

it follows that 

(𝑎𝑛 − 𝑎𝑛−1)(𝑎𝑛 + 𝑎𝑛−1) = (𝑎𝑛+1 − 𝑎𝑛)(𝑎𝑛+1 + 𝑎𝑛),        𝑛 = 2,3,4, … 

since 𝑎𝑛−1 < 𝑎𝑛 < 𝑎𝑛+1 ⇒ 𝑎𝑛+1 > 𝑎𝑛 > 𝑎𝑛−1 so the above equality gives 

𝑎2 − 𝑎1 > 𝑎3 − 𝑎2 > 𝑎4 − 𝑎3 > ⋯ > 𝑎𝑛 − 𝑎𝑛−1 > ⋯ > 0 

which is clearly impossible as this condition is shown by contradiction. 

4. PRACTICAL DEMONSTRATIONS WITH THE R SOFTWARE 

### Function to call out TRIANGULAR NUMBER through PARTIAL SUM OF INTEGERS ### 

arithsum = function(a,d,n){ 

 y=0 

 for (i in 1:n) y=(i*a)+i*(i-1)*d/2 

 return(y) 

} 

### TRIANGULAR NUMBER from FIRST to TWENTIETH position in its series ### 

arithsum(1,1,1) 

arithsum(1,1,2) 

arithsum(1,1,3) 

arithsum(1,1,4) 

arithsum(1,1,5) 

arithsum(1,1,6) 

arithsum(1,1,7) 

arithsum(1,1,8) 

arithsum(1,1,9) 

arithsum(1,1,10) 
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arithsum(1,1,11) 

arithsum(1,1,12) 

arithsum(1,1,13) 

arithsum(1,1,14) 

arithsum(1,1,15) 

arithsum(1,1,16) 

arithsum(1,1,17) 

arithsum(1,1,18) 

arithsum(1,1,19) 

arithsum(1,1,20) 

### Few Results ### 

> arithsum(1,1,1) 

[1] 1 

> arithsum(1,1,2) 

[1] 3 

> arithsum(1,1,3) 

[1] 6 

> arithsum(1,1,11) 

[1] 66 

> arithsum(1,1,16) 

[1] 136 

> arithsum(1,1,20) 

[1] 210 

 

### Function to call out SUM OF ARITHMETIC PROGRESSION for TRIANGULAR NUMBER ### 

arithsumtriangle = function(a,d,n){ 

 y=0 

 for (i in 1:n) y=y+(i*a)+i*(i-1)*d/2 

 return(y) 

} 

### SUM of A. P. for TRIANGULAR NUMBER from FIRST to TWENTIETH position ### 

arithsumtriangle(1,1,1) 

arithsumtriangle(1,1,2) 

arithsumtriangle(1,1,3) 

arithsumtriangle(1,1,4) 

arithsumtriangle(1,1,5) 

arithsumtriangle(1,1,6) 

arithsumtriangle(1,1,7) 

arithsumtriangle(1,1,8) 

arithsumtriangle(1,1,9) 

arithsumtriangle(1,1,10) 

arithsumtriangle(1,1,11) 

arithsumtriangle(1,1,12) 

arithsumtriangle(1,1,13) 

arithsumtriangle(1,1,14) 

arithsumtriangle(1,1,15) 

arithsumtriangle(1,1,16) 

arithsumtriangle(1,1,17) 

arithsumtriangle(1,1,18) 

arithsumtriangle(1,1,19) 

arithsumtriangle(1,1,20) 

### Few Results ### 

> arithsumtriangle(1,1,1) 

[1] 1 
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> arithsumtriangle(1,1,2) 

[1] 4 

> arithsumtriangle(1,1,3) 

[1] 10 

> arithsumtriangle(1,1,8) 

[1] 120 

> arithsumtriangle(1,1,12) 

[1] 364 

> arithsumtriangle(1,1,15) 

[1] 680 

> arithsumtriangle(1,1,19) 

[1] 1330 

> arithsumtriangle(1,1,20) 

[1] 1540 

  

Acknowledgment 

The authors acknowledge the Tertiary Education Trust Fund (TETFUND) of the Federal Government of Nigeria for 

providing grants for this research work and the teaching academic personnel of the Department of Mathematics and 

Statistics in Rufus Giwa Polytechnic, Owo for their understanding and unreserved cooperation in making available the 

statistical laboratory for personal utility in course of this research. 

 

REFERENCES 

[1] Afolabi, Y. O. and Oluwagunwa, A. P. 2021. Using Triangular Number as an Approximation Formulae for Sum 

of Arithmetic Progression. Global Scientific Journals, 9 (3): 1758-1764. 

[2] Panda, G. K. and Ray, P. K. 2011. Some Links of Balancing and Cobalancing Numbers with Pell and Associated 

Pell Numbers. Bulletin of the Institute of Mathematics, Academia Sinica (New Series), 6(1): 41-72. 

[3] Kleiner, I. 2012. Excursions in the History of Mathematics. Springer Science+Business Media, New York. 

[4] Oluwagunwa, A. P. and Afolabi, Y. O. 2018. Asymptotic Approximations of Triangular Numbers to the Summing 

Series of Integers. Octogon Mathematical Magazine, 26 (2): 575-582. 

[5] Olds, C. D., Lax, A. and Davido, G. 2000. The Geometry of Numbers. Math, Assoc. of Amer., 41: 1-174. 

[6] Stillwell, J. 2002. Mathematics and Its History. 2nd ed., Springer-Verlag. 

[7] Tattersall, J. J. 1999. Elementary Number Theory in Nine Chapters. Cambridge University Press. 

[8] Mazur, B. 2003. Imagining Numbers. Farrar Straus Giroux, Penguin Group Publishers. 

[9] Kline, I. 1972. Mathematics Thought from Ancient to Modern Times. Oxford University Press. 

[10] Burn, R. P. 1991. Square Triangular Numbers. Mathematics in Schools, 20(2). 

[11] Beldon, T. and Gardiner, T. 2002. Triangular Numbers and Perfect Squares. The Mathematical Gazette, 86(507): 

423-431. 

[12] Haggard, P. W. 1997. Pythagorean Triples and Sums of Triangular Numbers. International Journal of 

Mathematical Education in Science and Technology, 28(1): 109-116. 

[13] Heath, T. 1981. A History of Greek Mathematics. Cambridge University Press. 

 

 

IJSER

http://www.ijser.org/



